Canmetcon

The following entry is an example of an entry for the upcoming version 2.0 release of FooDB. This release of FooDB is under active development. The database so far contains over 25,000 unique compounds. This entry is a work in progress and may change rapidly.

COMPOUND IDENTIFICATION

General description

Accession Number FDB001224
Name L-Ascorbic acid
Version 1.0
Creation Date 2010-08-16 09:51:29
Update Date 2010-08-20 09:51:29
Description L-Ascorbic acid is the reduced form of vitamin C. L-Ascorbic acid occurs widely in animals and plants; good sources are citrus fruits and many vegetables. L-Ascorbic acid is considered an antioxidant and functions as a reducing agent and coenzyme in several metabolic pathways including several collagen synthesis reactions. Collagen deficiency results in the symptoms of scurvy. Humans and some other animals (including other primates and guinea pigs) depend on L-ascorbic acid in their diet because of loss of a functional form of the last enzyme (GuLO) of the biosynthesis pathway. (1, 2)
Synonyms
  • (+)-Ascorbate
  • (+)-Ascorbic acid
  • Antiscorbic vitamin
  • Antiscorbutic vitamin
  • Ascorbate
  • Ascorbic acid
  • Ascorbic acid, BAN, INN, USAN; L-form
  • E300
  • Hexuronic acid
  • L-(+)-Ascorbate
  • L-(+)-Ascorbic acid
  • L-Ascorbate
  • L-Ascorbate acid
  • L-Ascorbic acid (8CI,9CI)
  • L-Threo-hex-2-enono-1,4-lactone
  • Vitamin C
  • Vitamin C3
Chemical IUPAC Name 5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy-2,5-dihydrofuran-2-one

Chemical information

Structure Structure
Chemical Formula C6H8O6
InChI Identifier InChI=1S/C6H8O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h2,5,7-10H,1H2/t2-,5?/m0/s1
InChI Key InChIKey=CIWBSHSKHKDKBQ-SZSCBOSDSA-N
Isomeric SMILES OC[C@H](O)C1OC(=O)C(O)=C1O
Canonical SMILES OCC(O)C1OC(O)=C(O)C1=O
Average Molecular Weight 176.1241
Monoisotopic Molecular Weight 176.032087988

Chemical taxonomy

Type Natural compound
Family Food additive
Kingdom Organic
Super Class Organic acids
Class Hydroxy Acids
Sub-class Vitamins
Sub-structures
  • 1,2-diol
  • heterocyclic compound
  • ketone
  • primary alcohol
  • secondary alcohol

Physico-chemical properties

Property Value Source
State Solid BioSpider
Physical Description Odorless, white solid Not Available
Mass Composition C40.92%; H4.58%; O54.50% [JChem] Calculated from structure
Melting Point 190-192° C DFC
Boiling Point Not Available Not Available
Experimental Water Solubility 400 mg/mL at 40 °C [MERCK INDEX 1996] BioSpider
Predicted Water Solubility 2.45e+02 g/l [aLOGPs] Calculated from structure
Experimental LogP/Hydrophobicity -1.85 [AVDEEF 1997] BioSpider
Predicted LogP/Hydrophobicity -1.58 [aLOGPs]
-1.91 [JChem]
Calculated from structure
Predicted LogS 0.14 [aLOGPs] Calculated from structure
Experimental pKa 11.34 (pKa2, 25°, 0.1M KNO3) DFC
Predicted acidic pKa 11.20 [JChem] Calculated from structure
Predicted basic pKa -3.56 [JChem] Calculated from structure
Isoelectric Point Not Available Not Available
Charge Not Available Not Available
Optical Rotation [a]18D +49 (MeOH)
[a]25D +24 (c, 1 in H2O)
DFC
Spectroscopic UV Data Not Available Not Available
Density Not Available Not Available
Refractive Index Not Available Not Available

Linkouts

CAS Registry Number 50-81-7
DFC BWR07
EAFUS 245
DrugBank DB00126
HMDB HMDB00044
KEGG compound C00072
Pubchem compound 644104
Pubchem substance 15971359
ChEBI 29073
Phenol-Explorer Not Available
Dr. Duke ASCORBATE
BIGG Not Available
KNApSAcK C00001179
Wikipedia Ascorbic acid
PDB Not Available

FOOD COMPOSITION

Food contents

Food name Content range
(ppm)
Content
(mg/100 g FW)
Analytical method Citations
Peppers, sweet, red, freeze-dried - 1900.0 Fluorometric method (AOAC 967.22) for total ascorbic acid (10)
Acerola juice, raw - 1600.0 Fluorometric method (AOAC 967.22) for total ascorbic acid (10)
Rose hip, raw - 840.0 Fluorometric method (AOAC 967.22) for total ascorbic acid (10)
Chives, freeze-dried - 660.0 Fluorometric method (AOAC 967.22) for total ascorbic acid (10)
Guava 230-300 - Not Available (1)
Litchis, dried - 183.0 Fluorometric method (AOAC 967.22) for total ascorbic acid (10)
Broccoli - 113.0 Not Availaible (1)
Broccoli, raw - 89.2 Fluorometric method (AOAC 967.22) for total ascorbic acid (10)
Oranges, raw, navels - 59.1 Fluorometric method (AOAC 967.22) for total ascorbic acid (10)
Orange - 50.0 Not Available (1)

BIOLOGICAL EFFECTS

Biological effects overview

Health benefits
  • Anti scurvy
  • Increases immune function
  • Cancer prevention
  • Oxidative stress-related diseases prevention (e.g. atheroslcerosis, diabetes)
Adverse effects
  • Deficiency: results in the scurvy symptoms (e.g. loosened joints, bleeding gums, psychotic disorders, black and blue spots, broken capillaries)
  • Toxicity: the saturable kinetics of vitamin C makes toxicity more likely when multiple large doses (~1gram) are consumed throughout a day versus one single dose. A common symptom of unabsorbed vitamin C left in the gastrointestinal tract is osmotic diarrhea
Mechanisms of action
  • As an enzyme cofactor, L-ascorbic acid modulates a number of important enzymatic reactions. L-Ascorbic acid is an important activity enhancer for mono- and di- oxygenases where it maintains the transition metal ion centres (iron or copper) at the active site in a reduced form. (1)
  • Due to its antioxidant activities, L-ascorbic acid is a radical scavenger and is implied in detoxification reactions. L-Ascorbic acid interacts enzymatically and non-enzymatically with damaging oxygen radicals and their ROS (Reactive Oxygen Species) derivatives. L-Ascorbic acid is able to terminate radical chain reactions by disproportionation to non-toxic, non-radical products (i.e DHA and 2,3-diketogulonic acid). (1)
Bioactivities

METABOLISM

Metabolism overview

Biosynthesis L-Ascorbic acid is synthetised in plants and in the majority of vertebrates, excepting a few mammalian species including primates, humans and guinea pigs where the active form of GuLO enzyme is lacking.

In animals, biosynthesis implies D-glucuronic acid intermediates. D-glucose is obtained from breakdown of glycogen in liver (mammals, birds) or kidney (reptiles, amphibians, egg-laying mammals, birds) and then converted to D-glucuronic acid through the D-glucuronic acid pathway. D-glucuronic acid is then converted to L-gulono-1,4-lactone through L-gulonic acid. In the terminal reaction, L-gulono-1,4-lactone is converted to 2-oxo-L-gulono-1,4-lactone by the flavo-enzyme L-gulono-1,4-lactone oxidase (GuLO, EC 1.1.3.8). The 2-oxo-L-gulono-1,4-lactone spontaneously enolises to form L-ascorbic acid. (1)

In plants, biosynthesis is less known and several pathways have been proposed (1, 2, 3, 4). The most probable is the L-galactose pathway (3). The first part of this pathway is shared with the cell wall polysaccharides synthesis where D-glucose-6-phosphate is converted to GDP-D-mannose and GDP-L-galactose (5 steps). The second part of this pathway is dedicated to L-ascorbic acid biosynthesis: GDP-L-galactose is hydrolysed to L-galactose, L-galactose is oxidized to L-galactono-1,4-lactone by L-galactose dehydrogenase, and L-galactono-1,4-lactone is oxidized to L-ascorbic acid by the mitochondrial L-galactono-1,4-dehydrogenase (GLDH, EC 1.3.2.3). (1, 3, 5)

In yeast, which only produces a 5-carbon analogue called D-erythroascorbic acid, there is no L-ascorbic acid synthesis. (1)
Absorption Before absorption in the gastrointestinal tract, L-ascorbic acid is oxidised to semidehydroascorbate (SDA). SDA is reconverted to L-ascorbic acid in the cytosol. Transport of L-ascorbic acid is a saturable and dose dependent process that occurs by active transport (SVCT1 and SVCT2 sodium-dependant transporters). Ingestion causes a dose-related increase of L-ascorbic acid concentration in the plasma. (7)
Distribution L-Ascorbic acid is concentrated in various tissues and fluids (e.g. brain, eye, internal organs, leucocytes). (1)
Metabolism L-Ascorbic acid is oxidised to semidehydroascorbate (SDA), the mono-oxidised form of ascorbic acid, and dehydroascorbate (DHA), the fully oxidised form of vitamin C. These reactions are reversible and part of what is called "ascorbate recycling"; they can be enzymatique or non-enzymatique. The degradation of vitamin C in mammals is initiated by the spontaneous hydrolysis of dehydroascorbate to 2,3-diketo-L-gulonate, which is degraded to oxalate, CO2 and L-erythrulose as well as pentose phosphates intermediates (e.g. L-xylonate and L-lyxonate). (7, 8)
Excretion Renal (9)

Bioavailability / Pharmacokinetic values

Cmax
(μM)
tmax
(h)
t1/2
(h)
AUC
(μM x h)
Urinary Excretion
(% ± SD)
Fecal Excretion
(% ± SD)
Citations

Metabolites

Name HMDB_ID Citations
Oxalic acid HMDB02329 (9)
2-O-Methylascorbic acid Not Available
2-Ketoascorbitol Not Available
2,3-Diketo-L-gulonic acid HMDB06511 (9)
L-Erythrulose HMDB06293

Pathways

Pathway Database Pathway ID Pathway Name Organism
MetaCyc PWY-882 Ascorbate biosynthesis I (L-galactose pathway) Viridiplantae
MetaCyc PWY3DJ-35471 Ascorbate biosynthesis VI Vertebrae
MetaCyc PWY0-301 L-Ascorbate degradation, anaerobic Bacteria
KEGG ec00053 Ascorbate and aldarate metabolism Not Available
MetaCyc PWY-6370 Ascorbate recycling (cytosolic) Vertebrae
KEGG ec00310 Lysine degradation Not Available
MetaCyc PWY66-301 Catecholamine biosynthesis Metazoa
MetaCyc PWY-6100 L-Carnitine biosynthesis Eukariota
MetaCyc PWY-6318 Phenylalanine degradation IV (mammalian, via side chain) Metazoa

Metabolic enzymes

Enzyme Pathway name and links Type Pathway
L-Gulono-1,4-lactone oxidase
  • Ascorbate biosynthesis VI (MetaCyc: PWY3DJ-35471)
  • Ascorbate and aldarate metabolism (KEGG: ec00053)
Biosynthesis in vertebrates
L-Galactono-1,4-dehydrogenase
  • Ascorbate biosynthesis I (L-galactose pathway) (MetaCyc: PWY-882)
  • Ascorbate and aldarate metabolism (KEGG: ec00053)
Biosynthesis in plants
NADH-cytochrome b5 reductase
  • Ascorbate recycling (cytosolic) (MetaCyc: PWY-6370)
Metabolism
NADPH-thioredoxin reductase
  • Ascorbate recycling (cytosolic) (MetaCyc: PWY-6370)
Metabolism
L-Ascorbate transporting phosphotransferase system
  • L-Ascorbate degradation, anaerobic (MetaCyc: PWY0-301)
Metabolism
L-Ascorbate peroxidase
  • Ascorbate and aldarate metabolism (KEGG: ec00053)
Metabolism
Dehydroascorbic reductase
  • Ascorbate and aldarate metabolism (KEGG: ec00053)
Metabolism
L-Ascorbate oxidase
  • Ascorbate and aldarate metabolism (KEGG: ec00053)
Metabolism
PEP-sugar phosphotransferase enzyme II
  • Ascorbate and aldarate metabolism (KEGG: ec00053)
Metabolism

Targets

Target Pathway name and links Type Pathway
Gamma-butyrobetaine dioxygenase
  • Lysine degradation (KEGG: ec00310)
  • L-Carnitine biosynthesis (MetaCyc: PWY-6100)
Target cofactor
Dopamine beta monooxygenase
  • Catecholamine biosynthesis (MetaCyc: PWY66-301)
Target cofactor
4-Hydroxyphenylpyruvate dioxygenase
  • Phenylalanine degradation IV (mammalian, via side chain) (MetaCyc: PWY-6318)
Target cofactor

Transporters

TransporterReference
Sodium-dependent active cotransporter SVCT1(7)
Sodium-dependent active cotransporter SVCT2(7)

METABOLIC ENZYME, TARGET AND TRANSPORTER DETAILS

Enzyme 1
Enzyme 1 Name L-Gulonolactone oxidase
Enzyme 1 Synonyms
  1. LGO
  2. L-gulono-gamma-lactone oxidase
  3. GLO
Enzyme 1 Gene Name Gulo
Enzyme 1 Protein Sequence >L-Gulonolactone oxidase
  MVHGYKGVQFQNWAKTYGCSPEVYYQPTSVEEVREVLALAREQKKKVKVVGGGHSPSDIACTDGFMIHMG
  KMNRVLQVDKEKKQITVEAGILLADLHPQLDEHGLAMSNLGAVSDVTVAGVIGSGTHNTGIKHGILATQV
  VALTLMTADGEVLECSESRNADVFQAARVHLGCLGIILTVTLQCVPQFHLQETSFPSTLKEVLDNLDSHL
  KRSEYFRFLWFPHTENVSIIYQDHTNKAPSSASNWFWDYAIGFYLLEFLLWTSTYLPCLVGWINRFFFWM
  LFNCKKESSNLSHKIFTYECRFKQHVQDWAIPREKTKEALLELKAMLEAHPKVVAHYPVEVRFTRGDDIL
  LSPCFQRDSCYMNIIMYRPYGKDVPRLDYWLAYETIMKKFGGRPHWAKAHNCTQKDFEEMYPTFHKFCDI
  REKLDPTGMFLNSYLEKVFY
Enzyme 1 Number of Residues 440
Enzyme 1 Molecular Weight 50615.0
Enzyme 1 Theoretical pI 7.28
Enzyme 1 GO Classification
Function
  • catalytic activity
  • oxidoreductase activity
  • oxidoreductase activity, acting on CH-OH group of donors
  • oxidoreductase activity, acting on the CH-OH group of donors, oxygen as acceptor
  • D-arabinono-1,4-lactone oxidase activity
Process
  • cellular metabolism
  • generation of precursor metabolites and energy
  • electron transport
  • physiological process
  • metabolism
  • biosynthesis
Component
  • cell
  • membrane
Enzyme 1 General Function Energy production and conversion
Enzyme 1 Specific Function Oxidizes L-gulono-1,4-lactone to hydrogen peroxide and L-xylo-hexulonolactone which spontaneously isomerizes to L- ascorbate
Enzyme 1 Pathways
  • Cofactor biosynthesis (map00)
  • L-ascorbate biosynthesis (map00)
Enzyme 1 Reactions Not Available
Enzyme 1 Pfam Domain Function
Enzyme 1 Signals None
Enzyme 1 Transmembrane Regions
  • 251-273
Enzyme 1 Essentiality Not Available
Enzyme 1 GenBank ID Protein 59808907
Enzyme 1 UniProtKB/Swiss-Prot ID P10867
Enzyme 1 UniProtKB/Swiss-Prot Entry Name GGLO_RAT
Enzyme 1 PDB ID Not Available
Enzyme 1 Cellular Location
  • Microsome membrane
  • Endoplasmic reticulum membrane
  • Single-pass membrane protein
Enzyme 1 Gene Sequence >1323 bp
  ATGGTCCATGGGTACAAAGGGGTCCAGTTCCAAAATTGGGCAAAGACCTATGGTTGCAGTCCAGAGGTGT
  ACTACCAGCCCACCTCCGTGGAGGAGGTCAGAGAGGTGCTGGCCCTGGCCCGGGAGCAGAAGAAGAAAGT
  GAAGGTGGTGGGTGGTGGCCACTCGCCTTCAGACATTGCCTGCACTGACGGTTTCATGATCCACATGGGC
  AAGATGAACCGGGTTCTCCAGGTGGACAAGGAGAAGAAGCAGGTAACAGTGGAAGCCGGTATCCTCCTGG
  CTGACCTGCACCCACAGCTGGATGAGCATGGCCTGGCCATGTCCAATCTGGGAGCAGTGTCTGATGTGAC
  AGTTGCTGGTGTCATTGGATCCGGAACACATAACACAGGGATCAAGCACGGCATCCTGGCCACTCAGGTG
  GTGGCCCTGACCCTGATGACAGCTGATGGAGAAGTTCTGGAATGTTCTGAGTCAAGAAATGCAGATGTGT
  TCCAGGCTGCACGGGTGCACCTGGGTTGCCTGGGTATCATCCTCACCGTCACCCTGCAGTGTGTGCCTCA
  GTTTCACCTTCAGGAGACATCCTTCCCTTCGACCCTCAAAGAGGTCCTTGACAACCTAGACAGCCACCTG
  AAGAGGTCTGAGTACTTCCGCTTCCTCTGGTTTCCTCACACTGAGAACGTCAGCATCATCTACCAAGACC
  ACACCAACAAGGCCCCCTCCTCTGCATCTAACTGGTTTTGGGACTATGCCATCGGGTTCTACCTACTGGA
  GTTCTTGCTCTGGACCAGCACCTACCTGCCATGCCTCGTGGGCTGGATCAACCGCTTCTTCTTCTGGATG
  CTGTTCAACTGCAAGAAGGAGAGCAGCAACCTCAGTCACAAGATCTTCACCTACGAGTGTCGCTTCAAGC
  AGCATGTACAAGACTGGGCCATCCCTAGGGAGAAGACCAAGGAGGCCCTACTGGAGCTAAAGGCCATGCT
  GGAGGCCCACCCCAAAGTGGTAGCCCACTACCCCGTAGAGGTGCGCTTCACCCGAGGCGATGACATTCTG
  CTGAGCCCCTGCTTCCAGAGGGACAGCTGCTACATGAACATCATTATGTACAGGCCCTATGGAAAGGACG
  TGCCTCGGCTAGACTACTGGCTGGCCTATGAGACCATCATGAAGAAGTTTGGAGGAAGACCCCACTGGGC
  AAAGGCCCACAATTGCACCCGGAAGGACTTTGAGGAAATGTACCCCACCTTTCACAAGTTCTGTGACATC
  CGTGAGAAGCTGGACCCCACTGGAATGTTCTTGAATTCGTACCTGGAGAAAGTCTTCTACTAA
Enzyme 1 GenBank Gene ID BC089803
Enzyme 1 GeneCard ID Gulo
Enzyme 1 GenAtlas ID Not Available
Enzyme 1 HGNC ID Not Available
Enzyme 1 Chromosome Location Not Available
Enzyme 1 Locus Not Available
Enzyme 1 SNPs Not Available
Enzyme 1 General References
  1. Koshizaka T, Nishikimi M, Ozawa T, Yagi K: Isolation and sequence analysis of a complementary DNA encoding rat liver L-gulono-gamma-lactone oxidase, a key enzyme for L-ascorbic acid biosynthesis. J Biol Chem. 1988 Feb 5;263(4):1619-21. [PubMed]
  2. Nishikimi M, Kawai T, Yagi K: Guinea pigs possess a highly mutated gene for L-gulono-gamma-lactone oxidase, the key enzyme for L-ascorbic acid biosynthesis missing in this species. J Biol Chem. 1992 Oct 25;267(30):21967-72. [PubMed]
  3. Nishikimi M, Yagi K: Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis. Am J Clin Nutr. 1991 Dec;54(6 Suppl):1203S-1208S. [PubMed]
  4. Gerhard DS et al.: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed]
  5. Nishikimi M, Koshizaka T, Ozawa T, Yagi K: Occurrence in humans and guinea pigs of the gene related to their missing enzyme L-gulono-gamma-lactone oxidase. Arch Biochem Biophys. 1988 Dec;267(2):842-6. [PubMed]
  6. Fujitsuka N, Yokozawa T, Oura H, Akao T, Kobashi K, Ienaga K, Nakamura K: L-gulono-gamma-lactone oxidase is the enzyme responsible for the production of methylguanidine in the rat liver. Nephron. 1993;63(4):445-51. [PubMed]
Target 2
Target 2 Name Dopamine beta-hydroxylase
Target 2 Synonyms
  1. Dopamine beta-monooxygenase
  2. Soluble dopamine beta-hydroxylase
Target 2 Gene Name DBH
Target 2 Protein Sequence >Dopamine beta-hydroxylase
  MPALSRWASLPGPSMREAAFMYSTAVAIFLVILVAALQGSAPRESPLPYHIPLDPEGSLELSWNVSYTQE
  AIHFQLLVRRLKAGVLFGMSDRGELENADLVVLWTDGDTAYFADAWSDQKGQIHLDPQQDYQLLQVQRTP
  EGLTLLFKRPFGTCDPKDYLIEDGTVHLVYGILEEPFRSLEAINGSGLQMGLQRVQLLKPNIPEPELPSD
  ACTMEVQAPNIQIPSQETTYWCYIKELPKGFSRHHIIKYEPIVTKGNEALVHHMEVFQCAPEMDSVPHFS
  GPCDSKMKPDRLNYCRHVLAAWALGAKAFYYPEEAGLAFGGPGSSRYLRLEVHYHNPLVIEGRNDSSGIR
  LYYTAKLRRFNAGIMELGLVYTPVMAIPPRETAFILTGYCTDKCTQLALPPSGIHIFASQLHTHLTGRKV
  VTVLVRDGREWEIVNQDNHYSPHFQEIRMLKKVVSVHPGDVLITSCTYNTEDRELATVGGFGILEEMCVN
  YVHYYPQTQLELCKSAVDAGFLQKYFHLINRFNNEDVCTCPQASVSQQFTSVPWNSFNRDVLKALYSFAP
  ISMHCNKSSAVRFQGEWNLQPLPKVISTLEEPTPQCPTSQGRSPAGPTVVSIGGGKG
Target 2 Number of Residues 617
Target 2 Molecular Weight 69064.4
Target 2 Theoretical pI 6.39
Target 2 GO Classification
Function
  • oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced ascorbate as one donor, and incorporation of one atom of oxygen
  • dopamine beta-monooxygenase activity
  • binding
  • ion binding
  • cation binding
  • transition metal ion binding
  • copper ion binding
  • catalytic activity
  • oxidoreductase activity
  • monooxygenase activity
Process
  • amino acid derivative metabolism
  • biogenic amine metabolism
  • catecholamine metabolism
  • physiological process
  • metabolism
  • cellular metabolism
  • amino acid and derivative metabolism
  • amino acid metabolism
  • histidine family amino acid metabolism
  • histidine metabolism
  • histidine catabolism
  • physiological process
Component Not Available
Target 2 General Function Involved in copper ion binding
Target 2 Specific Function Conversion of dopamine to noradrenaline
Target 2 Pathways
  • Catecholamine biosynthesis (map00)
  • (R)-Noradrenaline biosynthesis (map00)
  • (R)-Noradrenaline from dopamine:step 1/1 (map00)
Target 2 Reactions Not Available
Target 2 Pfam Domain Function
Target 2 Signals None
Target 2 Transmembrane Regions
  • 17-37
Target 2 Essentiality Not Available
Target 2 GenBank ID Protein 30456
Target 2 UniProtKB/Swiss-Prot ID P09172
Target 2 UniProtKB/Swiss-Prot Entry Name DOPO_HUMAN
Target 2 PDB ID Not Available
Target 2 Cellular Location
  • Cytoplasmic vesicle, secretory vesicle membrane
  • Single-pass type II membrane protein. Cytoplasmic vesicle, secretory vesicle, chromaffin granule membrane
  • Single- pass type II membrane protein (Potential)
Target 2 Gene Sequence >1812 bp
  ATGCGGGAGGCAGCCTTCATGTACAGCACAGCAGTGGCCATCTTCCTGGTCATCCTGGTGGCCGCACTGC
  AGGGCTCGGCTCCCCGTGAGAGCCCCCTCCCCTATCACATCCCCCTGGACCCGGAGGGGTCCCTGGAGCT
  CTCATGGAATGTCAGCTACACCCAGGAGGCCATCCATTTCCAGCTCCTGGTGCGGAGGCTCAAGGCTGGC
  GTCCTGTTTGGGATGTCCGACCGTGGCGAGCTTGAGAACGCAGATCTCGTGGTGCTCTGGACCGATGGGG
  ACACTGCCTATTTTGCGGACGCCTGGAGTGACCAGAAGGGGCAGATCCACCTGGATCCCCAGCAGGACTA
  CCAGCTGCTGCAGGTGCAGAGGACCCCAGAAGGCCTGACCCTGCTTTTCAAGAGGCCCTTTGGCACCTGC
  GACCCCAAGGATTACCTCATTGAGGACGGCACTGTCCACTTGGTCTACGGGATCCTGGAGGAGCCGTTCC
  GGTCACTGGAGGCCATCAACGGCTCGGGCCTGCAGATGGGGCTGCAGAGGGTGCAGCTCCTGAAGCCCAA
  TATCCCCGAACCGGAGTTGCCCTCAGACACGTGCACCATGGAGGTCCAAGCTCCCAATATCCAGATCCCC
  AGCCAGGAGACCACGTACTGGTGCTACATTAAGGAGCTTCCAAAGGGCTTCTCTCGGCACCACATTATCA
  AGTACGAGCCCATCGTCACCAAGGGCAATGAGGCCCTTGTCCACCACATGGAAGTCTTCCAGTGCGCCCC
  CGAGATGGACAGCGTCCCCCACTTCAGCGGGCCCTGCGACTCCAAGATGAAACCCGACCGCCTCAACTAC
  TGCCGCCACGTGCTGGCCGCCTGGGCCCTGGGTGCCAAGGCATTTTACTACCCAGAGGAAGCCGGCCTTG
  CCTTCGGGGGTCCAGGGTCCTCCAGATATCTCCGCCTGGAAGTTCACTACCACAACCCACTGGTGATAGA
  AGGACGAAACGACTCCTCAGGCATCCGCTTGTACTACACAGCCAAGCTGCGGCGCTTCAACGCGGGGATC
  ATGGAGCTGGGACTGGTGTACACGCCAGTGATGGCCATTCCACCACGGGAGACCGCCTTCATCCTCACTG
  GCTACTGCACGGACAAGTGCACCCAGCTGGCACTGCCTCCCTCCGGGATCCACATCTTCGCCTCTCAGCT
  CCACACACACCTGACTGGGAGAAAGGTGGTCACAGTGCTGGTCCGGGACGGCCGGGAGTGGGAGATCGTG
  AACCAGGACAATCACTACAGCCCTCACTTCCAGGAGATCCGCATGTTGAAGAAGGTCGTGTCGGTCCATC
  CGGGAGATGTGCTCATCACCTCCTGCACGTACAACACAGAAGACCGGGAGCTGGCCACAGTGGGGGGCTT
  CGGGATCCTGGAGGAGATGTGTGTCAACTACGTGCACTACTACCCCCAGACGCAGCTGGAGCTCTGCAAG
  ACGGCTGTGGACGCCGGCTTCCTGCAGAAGTACTTCCACCTCATCAACAGGTTCAACAACGAGGATGTCT
  GCACCTGCCCTCAGGCGTCCGTGTCTCAGCAGTTCACCTCTGTTCCCTGGAACTCCTTCAACTGCGACGT
  ACTGAAGGCCCTGTACAGCTTCGCGCCCATCTCCATGCACTGCAACAAGTCCTCAGCCGTCCGCTTCCAG
  GGTGAATGGAACCTGCAGCCCCTGCCCAAGGTCATCTCCACACTGGAAGAGCCCACCCCACAGTGCCCCA
  CCAGCCAGGGCCGAAGCCCTGCTGGCCCCACCGTTGTCAGCATTGGTGGGGGCAAAGGCTGA
Target 2 GenBank Gene ID Y00096
Target 2 GeneCard ID DBH
Target 2 GenAtlas ID Not Available
Target 2 HGNC ID HGNC:2689
Target 2 Chromosome Location 9
Target 2 Locus 9q34
Target 2 SNPs Not Available
Target 2 General References
  1. Humphray SJ et al.: DNA sequence and analysis of human chromosome 9. Nature. 2004 May 27;429(6990):369-74. [PubMed]
  2. Lamouroux A, Vigny A, Faucon Biguet N, Darmon MC, Franck R, Henry JP, Mallet J: The primary structure of human dopamine-beta-hydroxylase: insights into the relationship between the soluble and the membrane-bound forms of the enzyme. EMBO J. 1987 Dec 20;6(13):3931-7. [PubMed]
  3. Gerhard DS et al.: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed]
  4. Kobayashi K, Kurosawa Y, Fujita K, Nagatsu T: Human dopamine beta-hydroxylase gene: two mRNA types having different 3'-terminal regions are produced through alternative polyadenylation. Nucleic Acids Res. 1989 Feb 11;17(3):1089-102. [PubMed]
  5. Li B, Tsing S, Kosaka AH, Nguyen B, Osen EG, Bach C, Chan H, Barnett J: Expression of human dopamine beta-hydroxylase in Drosophila Schneider 2 cells. Biochem J. 1996 Jan 1;313 ( Pt 1):57-64. [PubMed]
  6. Liu T, Qian WJ, Gritsenko MA, Camp DG 2nd, Monroe ME, Moore RJ, Smith RD: Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res. 2005 Nov-Dec;4(6):2070-80. [PubMed]
  7. Williams HJ, Bray N, Murphy KC, Cardno AG, Jones LA, Owen MJ: No evidence for allelic association between schizophrenia and a functional variant of the human dopamine beta-hydroxylase gene (DBH). Am J Med Genet. 1999 Oct 15;88(5):557-9. [PubMed]
  8. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES: Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999 Jul;22(3):231-8. [PubMed]
  9. Halushka MK, Fan JB, Bentley K, Hsie L, Shen N, Weder A, Cooper R, Lipshutz R, Chakravarti A: Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet. 1999 Jul;22(3):239-47. [PubMed]
  10. Kim CH, Zabetian CP, Cubells JF, Cho S, Biaggioni I, Cohen BM, Robertson D, Kim KS: Mutations in the dopamine beta-hydroxylase gene are associated with human norepinephrine deficiency. Am J Med Genet. 2002 Mar 1;108(2):140-7. [PubMed]
Transporter 1
Transporter 1 Name Solute carrier family 23 member 1
Transporter 1 Synonyms
  1. Sodium-dependent vitamin C transporter 1
  2. hSVCT1
  3. Na(+)/L-ascorbic acid transporter 1
  4. Yolk sac permease-like molecule 3
Transporter 1 Gene Name SLC23A1
Transporter 1 Protein Sequence >Solute carrier family 23 member 1
  MRAQEDLEGRTQHETTRDPSTPLPTEPKFDMLYKIEDVPPWYLCILLGFQHYLTCFSGTIAVPFLLAEAL
  CVGHDQHMVSQLIGTIFTCVGITTLIQTTVGIRLPLFQASAFAFLVPAKAILALERWKCPPEEEIYGNWS
  LPLNTSHIWHPRIREVQGAIMVSSVVEVVIGLLGLPGALLNYIGPLTVTPTVSLIGLSVFQAAGDRAGSH
  WGISACSILLIILFSQYLRNLTFLLPVYRWGKGLTLLRIQIFKMFPIMLAIMTVWLLCYVLTLTDVLPTD
  PKAYGFQARTDARGDIMAIAPWIRIPYPCQWGLPTVTAAAVLGMFSATLAGIIESIGDYYACARLAGAPP
  PPVHAINRGIFTEGICCIIAGLLGTGNGSTSSSPNIGVLGITKVGSRRVVQYGAAIMLVLGTIGKFTALF
  ASLPDPILGGMFCTLFGMITAVGLSNLQFVDMNSSRNLFVLGFSMFFGLTLPNYLESNPGAINTGILEVD
  QILIVLLTTEMFVGGCLAFILDNTVPGSPEERGLIQWKAGAHANSDMSSSLKSYDFPIGMGIVKRITFLK
  YIPICPVFKGFSSSSKDQIAIPEDTPENTETASVCTKV
Transporter 1 Number of Residues 598
Transporter 1 Molecular Weight 64814.4
Transporter 1 Theoretical pI 6.58
Transporter 1 GO Classification
Function
  • transporter activity
Process
  • physiological process
  • cellular physiological process
  • transport
Component
  • cell
  • membrane
Transporter 1 General Function Nucleotide transport and metabolism
Transporter 1 Specific Function Sodium/ascorbate cotransporter. Mediates electrogenic uptake of vitamin C, with a stoichiometry of 2 Na(+) for each ascorbate
Transporter 1 Pathways Not Available
Transporter 1 Reactions Not Available
Transporter 1 Pfam Domain Function
Transporter 1 Signals None
Transporter 1 Transmembrane Regions
  • 53-73
  • 82-102
  • 104-124
  • 160-180
  • 208-228
  • 251-271
  • 313-333
  • 359-379
  • 403-423
  • 427-447
  • 458-478
  • 491-511
Transporter 1 Essentiality Not Available
Transporter 1 GenBank ID Protein 3789785
Transporter 1 UniProtKB/Swiss-Prot ID Q9UHI7
Transporter 1 UniProtKB/Swiss-Prot Entry Name S23A1_HUMAN
Transporter 1 PDB ID Not Available
Transporter 1 Cellular Location
  • Membrane
  • Multi-pass membrane protein
Transporter 1 Gene Sequence >1797 bp
  ATGAGGGCCCAGGAGGACCTCGAGGGCCGGACACAGCATGAAACCACCAGGGACCCCTCGACCCCGCTAC
  CCACAGAGCCTAAGTTTGACATGTTGTACAAGATCGAGGACGTGCCACCTTGGTACCTGTGCATCCTGCT
  AGGGTTCCAGCACATCCATGACTGCTTACGTGGTACCATCGCCGTGCCCTTCCTGCTGGCTGAGGCGCTG
  TGTGTGGGCCACAGCCAGACACTCCATTGTCAGCTCATCGGCACCATCTTCACGTGCGTGGGCATCACCA
  CTCTCATCCAGACCACCGTGGGCATCCGGCTGCCGCTGTTCCAGGCCAGTGCCTTTGCATTTCTGGTTCC
  AGCCAAAGCCATACTGGCTCTGGAGAGATGGAAATGCCCCCCGGAAGAGGAGATCTACGGTAACTCCAGT
  CTGCCCCTGAACACCTCTCATATTTGGCACCCACGGAATCGGGAGGTCCAGGGTGCAATCATGGTGTCCA
  GCGTGGTGGAGGTGGTGATTGGCCTGCTGGGGCTGCCTGGGGCCCTGCTCAACTCACTTGGGCCTCTCAC
  AGTCACCCCCACTGTCTCCCTCATTGGCCTTTCTGTCTTCCAAGCTGCTGGCGACCGACCTGGCTCCCAC
  TGGGGCATCTCAGCTTGCTCCATTCTCCTGATCATCCTCTTCTCCCAGTACCTGCGCAACCTCACCTTCC
  TGCTGCCTGTCTACCGCTGGGGCAAGGGGCTCACTCTCCTCCGCATCCAGATCTTCAAAATGTTTCCTAT
  CATGCTGGCCATCATGACCGTGTGGCTGCTCTGCATTGTCCTGACCTTGACAGACGTGCTGCCCACAGAC
  CCAAAAGCCATTGGCTTCCAGGCACGAACCGATGCCCGTGGTGACATCATGGCTATTGCACCCTGGATCC
  GCATCCCCTACCCCTGTCAGTGGGGCCTGCCCACGGTGACTGCGGCTGCTGTCCTGGGAATGTTCAGCGC
  CACTCTGGCAGGCATCATTGAGTCCATCGGAGATTACTACGCCTGTGCCCGCCTGGCTGGTGCACCACCC
  CCTCCAGTACATGCTATCAACAGGGGCATCTTCACCGAAGGCATTTGCTGCATCATCGCGGGGCTATTGG
  GCACGGGCAACGGGTCCACCTCGTCCAGTCCCAACATTGGCGTCCTGGGAATTACCAAGGTGGGCAGCCG
  GCGCGTGGTGCAGTATGGTGCGGCTATCATGCTGGTCCTGGGCACCATCGGCAAGTTCACGGCCCTCTTC
  GCCTCGCTCCCTGACCCCATCCTGGGGGGCATGTTCTGCAGTCTCTTTGGCATGATTACAGCTGTGGGGC
  TGTCCAACCTGCAATTTGTGGCACTGAACTCCTCTCGCAACCTCTTCGTGCTGGGATTTTCCATGTTCTT
  CGGGCTCACGCTGCCCAATTACCTGGAGTCCAACCCTGGCGCCATCAATACAGGCATTCTTGAAGTGGAT
  CAGATTCTGATTGTGCTGCTGACCACGGAGATGTTTGTGGGCGGGTGCCTTGCTTTCATACTTGACAACA
  CAGTGCCAGGGAGCCCAGAGGAGCGTGGTCTGATACAGTGGAAAGCTGGGGCTCATGCCAACAGTGACAT
  GTCTTCCAGCCTGAAGAGCTACGATTTCCCATTTGGGATGGGCATAGTAAAAAGAATTACCTTTCTGAAA
  TACATTCCTATCTGCCCAGTCTTCAAAGGATTTTCTTCAAGTTCAAAAGATCAGATTGCAATTCCAGAAG
  ACACTCCAGAAAATACAGAAACTGCATCTGTGTGCACCAAGGTCTGA
Transporter 1 GenBank Gene ID AF058317
Transporter 1 GeneCard ID SLC23A1
Transporter 1 GenAtlas ID Not Available
Transporter 1 HGNC ID HGNC:10974
Transporter 1 Chromosome Location 5
Transporter 1 Locus 5q31.2-q31.3
Transporter 1 SNPs Not Available
Transporter 1 General References
  1. Faaland CA, Race JE, Ricken G, Warner FJ, Williams WJ, Holtzman EJ: Molecular characterization of two novel transporters from human and mouse kidney and from LLC-PK1 cells reveals a novel conserved family that is homologous to bacterial and Aspergillus nucleobase transporters. Biochim Biophys Acta. 1998 Nov 8;1442(2-3):353-60. [PubMed]
  2. Wang H, Dutta B, Huang W, Devoe LD, Leibach FH, Ganapathy V, Prasad PD: Human Na(+)-dependent vitamin C transporter 1 (hSVCT1): primary structure, functional characteristics and evidence for a non-functional splice variant. Biochim Biophys Acta. 1999 Nov 9;1461(1):1-9. [PubMed]
  3. Daruwala R, Song J, Koh WS, Rumsey SC, Levine M: Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett. 1999 Nov 5;460(3):480-4. [PubMed]
  4. Wang Y, Mackenzie B, Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA: Human vitamin C (L-ascorbic acid) transporter SVCT1. Biochem Biophys Res Commun. 2000 Jan 19;267(2):488-94. [PubMed]
  5. Erichsen HC, Eck P, Levine M, Chanock S: Characterization of the genomic structure of the human vitamin C transporter SVCT1 (SLC23A2). J Nutr. 2001 Oct;131(10):2623-7. [PubMed]
  6. Liang WJ, Johnson D, Jarvis SM: Vitamin C transport systems of mammalian cells. Mol Membr Biol. 2001 Jan-Mar;18(1):87-95. [PubMed]
  7. Gerhard DS et al.: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed]
Transporter 2
Transporter 2 Name Solute carrier family 23 member 2
Transporter 2 Synonyms
  1. Sodium-dependent vitamin C transporter 2
  2. hSVCT2
  3. Na(+)/L-ascorbic acid transporter 2
  4. Yolk sac permease-like molecule 2
  5. Nucleobase transporter-like 1 protein
Transporter 2 Gene Name SLC23A2
Transporter 2 Protein Sequence >Solute carrier family 23 member 2
  MMGIGKNTTSKSMEAGSSTEGKYEDEAKHPAFFTLPVVINGGATSSGEQDNEDTELMAIYTTENGIAEKS
  SLAETLDSTGSLDPQRSDMIYTIEDVPPWYLCIFLGLQHYLTCFSGTIAVPFLLADAMCVGYDQWATSQL
  IGTIFFCVGITTLLQTTFGCRLPLFQASAFAFLAPARAILSLDKWKCNTTDVSVANGTAELLHTEHIWYP
  RIREIQGAIIMSSLIEVVIGLLGLPGALLKYIGPLTITPTVALIGLSGFQAAGERAGKHWGIAMLTIFLV
  LLFSQYARNVKFPLPIYKSKKGWTAYKLQLFKMFPIILAILVSWLLCFIFTVTDVFPPDSTKYGFYARTD
  ARQGVLLVAPWFKVPYPFQWGLPTVSAAGVIGMLSAVVASIIESIGDYYACARLSCAPPPPIHAINRGIF
  VEGLSCVLDGIFGTGNGSTSSSPNIGVLGITKVGSRRVIQCGAALMLALGMIGKFSALFASLPDPVLGAL
  FCTLFGMITAVGLSNLQFIDLNSSRNLFVLGFSIFFGLVLPSYLRQNPLVTGITGIDQVLNVLLTTAMFV
  GGCVAFILDNTIPGTPEERGIRKWKKGVGKGNKSLDGMESYNLPFGMNIIKKYRCFSYLPISPTFVGYTW
  KGLRKSDNSRSSDEDSQATG
Transporter 2 Number of Residues 650
Transporter 2 Molecular Weight 70336.2
Transporter 2 Theoretical pI 7.74
Transporter 2 GO Classification
Function
  • transporter activity
Process
  • physiological process
  • cellular physiological process
  • transport
Component
  • cell
  • membrane
Transporter 2 General Function Nucleotide transport and metabolism
Transporter 2 Specific Function Sodium/ascorbate cotransporter. Mediates electrogenic uptake of vitamin C, with a stoichiometry of 2 Na(+) for each ascorbate
Transporter 2 Pathways Not Available
Transporter 2 Reactions Not Available
Transporter 2 Pfam Domain Function
Transporter 2 Signals
  • None
Transporter 2 Transmembrane Regions
  • 103-123
  • 140-160
  • 162-182
  • 219-239
  • 242-262
  • 267-287
  • 313-333
  • 372-392
  • 462-482
  • 486-506
  • 514-534
  • 548-568
Transporter 2 Essentiality Not Available
Transporter 2 GenBank ID Protein 3789789
Transporter 2 UniProtKB/Swiss-Prot ID Q9UGH3
Transporter 2 UniProtKB/Swiss-Prot Entry Name S23A2_HUMAN
Transporter 2 PDB ID Not Available
Transporter 2 Cellular Location
  • Membrane
  • Multi-pass membrane protein
Transporter 2 Gene Sequence >1953 bp
  ATGATGGGTATTGGTAAGAATACCACATCCAAATCAATGGAGGCTGGAAGTTCAACAGAAGGCAAATACG
  AAGACGAGGCAAAGCACCCAGCTTTCTTCACTCTTCCGGTGGTGATAAATGGAGGCGCCACCTCCAGCGG
  TGAGCAGGACAATGAGGACACTGAGCTCATGGCGATCTACACTACGGAAAACGGCATTGCAGAAAAGAGC
  TCTCTCGCTGAGACCCTGGATAGCACTGGCAGTCTGGACCCCCAGCGATCAGACATGATTTATACCATAG
  AAGATGTTCCTCCCTGGTACCTGTGTATATTTCTGGGGCTACAGCACTACCTGACATGCTTCAGCGGCAC
  GATCGCAGTGCCCTTCCTGTTGGCCGATGCCATGTGTGTGGGGTACGACCAGTGGGCCACCAGCCAGCTC
  ATTGGGACCATTTTCTTCTGTGTGGGAATCACTACTTTGCTACAGACAACGTTTGGATGCAGGTTACCCC
  TGTTTCAGACCAGTGCTTTTGCATTTTTGGCCCCTGCTCGAGCCATCCTGTCTTTAGATAAATGGAAATG
  TAACACCACAGATGTTTCAGTTGCCAATGGAACAGCAGAGCTGTTGCACACAGAACACATCTGGTATCCC
  CGGATCCGAGAGATCCAGGGGGCCATCATCATGTCCTCACTGATAGAAGTAGTCATCGGCCTCCTCGGCC
  TGCCTGGGGCTCTACTGAAGTACATCGGTCCCTTGACCATTACACCCACGGTGGCCCTAATTGGCCTCTC
  TGGTTTCCAGGCAGCGGGGGAGAGAGCCGGGAAGCACTGGGGCATTGCCATGCTGACAATATTCCTAGTA
  TTACTGTTTTCTCAATACGCCAGAAATGTTAAATTTCCTCTCCCGATTTATAAATCCAAGAAAGGATGGA
  CTGCGTACAAGTTACAGCTGTTCAAAATGTTCCCTATCATCCTGGCCATCCTGGTATCCTGGCTGCTCTG
  CTTCATCTTCACGGTGACAGATGTCTTCCCTCCCGACAGCACAAAGTATGGCTTCTATGCTCGCACAGAT
  GCCAGGCAAGGCGTGCTTCTGGTAGCCCCGTGGTTTAAGGTTCCATACCCATTTCAGTGGGGACTGCCCA
  CCGTGTCTGCGGCCGGTGTCATCGGCATGCTCAGTGCCGTGGTCGCCAGCATCATCGAGTCTATTGGTGA
  CTACTACGCCTGTGCACGGCTGTCCTGTGCCCCACCCCCCCCCATCCACGCAATAAACAGGGGAATTTTC
  GTGGAAGGCCTCTCCTGTGTTCTTGATGGCATATTTGGTACTGGGAATGGCTCTACTTCATCCAGTCCCA
  ACATTGGAGTTTTGGGAATTACAAAGGTCGGCAGCCGCCGCGTGATACAGTGCGGAGCAGCCCTCATGCT
  CGCTCTGGGCATGATCGGGAAGTTCAGCGCCCTCTTTGCGTCCCTTCCGGATCCTGTGCTGGGAGCCCTG
  TTCTGCACGCTCTTTGGAATGATCACAGCTGTTGGCCTCTCTAACCTGCAGTTCATTGATTTAAATTCTT
  CCCGGAACCTCTTTGTGCTTGGATTTTCGATCTTCTTTGGGCTCGTCCTTCCAAGTTACCTCAGACAGAA
  CCCTCTGGTCACAGGGATAACAGGAATCGATCAAGTGTTGAACGTCCTTCTCACAACTGCTATGTTTGTA
  GGGGGCTGTGTGGCTTTTATCCTGGATAACACCATCCCAGGCACTCCAGAGGAAAGAGGAATCCGGAAAT
  GGAAGAAGGGTGTGGGCAAAGGGAACAAATCACTCGACGGCATGGAGTCGTACAATTTGCCATTTGGCAT
  GAACATTATAAAAAAATACAGATGCTTCAGCTACTTACCCATCAGCCCAACCTTTGTGGGCTACACATGG
  AAAGGCCTCAGGAAGAGCGACAACAGCCGGAGTTCAGATGAAGACTCCCAGGCCACGGGATAG
Transporter 2 GenBank Gene ID AF058319
Transporter 2 GeneCard ID SLC23A2
Transporter 2 GenAtlas ID Not Available
Transporter 2 HGNC ID HGNC:10973
Transporter 2 Chromosome Location 2
Transporter 2 Locus 20p13
Transporter 2 SNPs Not Available
Transporter 2 General References
  1. Faaland CA, Race JE, Ricken G, Warner FJ, Williams WJ, Holtzman EJ: Molecular characterization of two novel transporters from human and mouse kidney and from LLC-PK1 cells reveals a novel conserved family that is homologous to bacterial and Aspergillus nucleobase transporters. Biochim Biophys Acta. 1998 Nov 8;1442(2-3):353-60. [PubMed]
  2. Rajan DP, Huang W, Dutta B, Devoe LD, Leibach FH, Ganapathy V, Prasad PD: Human placental sodium-dependent vitamin C transporter (SVCT2): molecular cloning and transport function. Biochem Biophys Res Commun. 1999 Sep 7;262(3):762-8. [PubMed]
  3. Daruwala R, Song J, Koh WS, Rumsey SC, Levine M: Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett. 1999 Nov 5;460(3):480-4. [PubMed]
  4. Hogue DL, Ling V: A human nucleobase transporter-like cDNA (SLC23A1): member of a transporter family conserved from bacteria to mammals. Genomics. 1999 Jul 1;59(1):18-23. [PubMed]
  5. Liang WJ, Johnson D, Jarvis SM: Vitamin C transport systems of mammalian cells. Mol Membr Biol. 2001 Jan-Mar;18(1):87-95. [PubMed]
  6. Nagase T, Seki N, Ishikawa K, Ohira M, Kawarabayasi Y, Ohara O, Tanaka A, Kotani H, Miyajima N, Nomura N: Prediction of the coding sequences of unidentified human genes. VI. The coding sequences of 80 new genes (KIAA0201-KIAA0280) deduced by analysis of cDNA clones from cell line KG-1 and brain. DNA Res. 1996 Oct 31;3(5):321-9, 341-54. [PubMed]
  7. Nakajima D, Okazaki N, Yamakawa H, Kikuno R, Ohara O, Nagase T: Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones. DNA Res. 2002 Jun 30;9(3):99-106. [PubMed]
  8. Deloukas P et al.: The DNA sequence and comparative analysis of human chromosome 20. Nature. 2001 Dec 20-27;414(6866):865-71. [PubMed]
  9. Gerhard DS et al.: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed]

FILES

Structure files

MOL Show
SDF Show
PDB Show
2D Structure
3D Structure
Experimental PDB ID 1E71
Experimental PDB File Show
Experimental PDB Structure

Spectrum files

Experimental 1H NMR Show Spectrum
Download FID (Varian)
Predicted 1H NMR Show Spectrum
Experimental 13C NMR Not Available
Predicted 13C NMR Show Spectrum
Show Peaklist
Experimental HSQC NMR Show Spectrum
Download FID (Bruker)
Simplified TOCSY Show Spectrum
Mass
Low Energy
Show Spectrum
Medium Energy
Show Spectrum
High Energy
Show Spectrum
BMRB Show Spectrum

REFERENCES

    General

  1. Davey MW, Van Montagu M, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 2000;80(7):825–860.
  2. Smirnoff N. The function and metabolism of ascorbic acid in plants. Ann. Bot. 1996;78(6):661-669.
  3. Wheeler GL, Jones MA, Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature 1998;393(6683):365-369. [Pubmed]
  4. Loewus FA. Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 1999;52(2):193-210.
  5. Valpuesta V, Botella MA. Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 2004;9(12):573-577. [Pubmed]
  6. Vitamin C. Available from: http://www.exrx.net/Nutrition/Antioxidants/VitaminC.html
  7. Linster CL, Van Schaftingen E. Vitamin C. Biosynthesis, recycling and degradation in mammals. FEBS J 2007;274(1):1-22. [Pubmed]
  8. Bánhegyi G, Braun L, Csala M, Puskás F, Mandl J. Ascorbate metabolism and its regulation in animals. Free Radic. Biol. Med 1997;23(5):793-803.
  9. Metabolites

  10. Hellman L, Burns JJ. Metabolism of L-ascorbic acid-1-C14 in man. J. Biol. Chem 1958;230(2):923-930. [Pubmed]
  11. Food composition

  12. U.S. Department of Agriculture, Agricultural Research Service. 2008. USDA National Nutrient Database for Standard Reference, Release 21. Nutrient Data Laboratory Home Page, http://www.ars.usda.gov/ba/bhnrc/ndl
  13. Pharmacokinetics

    Synthesis reference