Record Information
Version1.0
Creation date2011-09-21 01:07:19 UTC
Update date2015-07-21 06:58:41 UTC
Primary IDFDB026205
Secondary Accession NumbersNot Available
Chemical Information
FooDB NamePE(18:0/P-16:0)
DescriptionPE(18:0/P-16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:0/P-16:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. [HMDB]
CAS NumberNot Available
Structure
Thumb
Synonyms
SynonymSource
1-Stearoyl-2-(1-enyl-palmitoyl)-sn-glycero-3-oethanolamineHMDB
1-stearoyl-2-(1-enyl-palmitoyl)-sn-glycero-3-phosphoethanolaminehmdb
PE(18:0/16:0)HMDB
Predicted Properties
PropertyValueSource
Water Solubility6.7e-05 g/LALOGPS
logP9.09ALOGPS
logP11.73ChemAxon
logS-7ALOGPS
pKa (Strongest Acidic)1.87ChemAxon
pKa (Strongest Basic)10ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area117.31 ŲChemAxon
Rotatable Bond Count40ChemAxon
Refractivity200.54 m³·mol⁻¹ChemAxon
Polarizability88.89 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Chemical FormulaC39H78NO7P
IUPAC name(2-aminoethoxy)[(2R)-2-(hexadec-1-en-1-yloxy)-3-(octadecanoyloxy)propoxy]phosphinic acid
InChI IdentifierInChI=1S/C39H78NO7P/c1-3-5-7-9-11-13-15-17-19-20-22-24-26-28-30-32-39(41)45-36-38(37-47-48(42,43)46-35-33-40)44-34-31-29-27-25-23-21-18-16-14-12-10-8-6-4-2/h31,34,38H,3-30,32-33,35-37,40H2,1-2H3,(H,42,43)/t38-/m1/s1
InChI KeyYUQKKCLQLSQTEV-KXQOOQHDSA-N
Isomeric SMILES[H][C@@](COC(=O)CCCCCCCCCCCCCCCCC)(COP(O)(=O)OCCN)OC=CCCCCCCCCCCCCCC
Average Molecular Weight704.0129
Monoisotopic Molecular Weight703.551590367
Classification
Description Belongs to the class of organic compounds known as glycerophosphoethanolamines. These are glycerolipids characterized by an ethanolamine ester of glycerophosphoric acid. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassGlycerophospholipids
Sub ClassGlycerophosphoethanolamines
Direct ParentGlycerophosphoethanolamines
Alternative Parents
Substituents
  • Sn-glycero-3-phosphoethanolamine
  • Glycerol vinyl ether
  • Phosphoethanolamine
  • Fatty acid ester
  • Dialkyl phosphate
  • Fatty acyl
  • Organic phosphoric acid derivative
  • Alkyl phosphate
  • Phosphoric acid ester
  • Amino acid or derivatives
  • Carboxylic acid ester
  • Monocarboxylic acid or derivatives
  • Carboxylic acid derivative
  • Organopnictogen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Amine
  • Primary aliphatic amine
  • Organic nitrogen compound
  • Hydrocarbon derivative
  • Carbonyl group
  • Organic oxide
  • Organic oxygen compound
  • Primary amine
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Ontology
OntologyNo ontology term
Physico-Chemical Properties - Experimental
Physico-Chemical Properties - Experimental
PropertyValueReference
Physical stateSolid
Physical DescriptionNot Available
Mass CompositionNot Available
Melting PointNot Available
Boiling PointNot Available
Experimental Water SolubilityNot Available
Experimental logPNot Available
Experimental pKaNot Available
Isoelectric pointNot Available
ChargeNot Available
Optical RotationNot Available
Spectroscopic UV DataNot Available
DensityNot Available
Refractive IndexNot Available
Spectra
SpectraNot Available
ChemSpider ID24768488
ChEMBL IDNot Available
KEGG Compound IDC00350
Pubchem Compound ID53479614
Pubchem Substance IDNot Available
ChEBI IDNot Available
Phenol-Explorer IDNot Available
DrugBank IDNot Available
HMDB IDHMDB09015
CRC / DFC (Dictionary of Food Compounds) IDNot Available
EAFUS IDNot Available
Dr. Duke IDNot Available
BIGG IDNot Available
KNApSAcK IDNot Available
HET IDNot Available
Food Biomarker OntologyNot Available
VMH IDNot Available
Flavornet IDNot Available
GoodScent IDNot Available
SuperScent IDNot Available
Wikipedia IDLecithin
Phenol-Explorer Metabolite IDNot Available
Duplicate IDSNot Available
Old DFC IDSNot Available
Associated Foods
FoodContent Range AverageReference
FoodReference
Biological Effects and Interactions
Health Effects / BioactivitiesNot Available
Enzymes
NameGene NameUniProt ID
Phospholipase D2PLD2O14939
Phospholipase D3PLD3Q8IV08
Phospholipase D4PLD4Q96BZ4
Phosphatidylserine decarboxylase proenzymePISDQ9UG56
Phosphatidylethanolamine-binding protein 1PEBP1P30086
Phosphatidylethanolamine-binding protein 4PEBP4Q96S96
Abhydrolase domain-containing protein 4ABHD4Q8TB40
PathwaysNot Available
MetabolismNot Available
BiosynthesisNot Available
Organoleptic Properties
FlavoursNot Available
Files
MSDSNot Available
References
Synthesis ReferenceNot Available
General ReferenceNot Available
Content Reference