Record Information |
---|
Version | 1.0 |
---|
Creation date | 2010-04-08 22:05:34 UTC |
---|
Update date | 2019-11-26 02:58:07 UTC |
---|
Primary ID | FDB002906 |
---|
Secondary Accession Numbers | Not Available |
---|
Chemical Information |
---|
FooDB Name | Glycerol tridodecanoate |
---|
Description | TG(12:0/12:0/12:0) or trilauric glyceride is a tridodecanoic acid triglyceride or medium chain triglyceride. Triglycerides (TGs) are also known as triacylglycerols or triacylglycerides, meaning that they are glycerides in which the glycerol is esterified with three fatty acid groups (i.e. fatty acid tri-esters of glycerol). TGs may be divided into three general types with respect to their acyl substituents. They are simple or monoacid if they contain only one type of fatty acid, diacid if they contain two types of fatty acids and triacid if three different acyl groups. Chain lengths of the fatty acids in naturally occurring triglycerides can be of varying lengths and saturations but 16, 18 and 20 carbons are the most common. TG(12:0/12:0/12:0), in particular, consists of one chain of dodecanoic acid at the C-1 position, one chain of dodecanoic acid at the C-2 position and one chain of dodecanoic acid at the C-3 position. TGs are the main constituent of vegetable oil and animal fats. TGs are major components of very low density lipoprotein (VLDL) and chylomicrons, play an important role in metabolism as energy sources and transporters of dietary fat. They contain more than twice the energy (9 kcal/g) of carbohydrates and proteins. In the intestine, triglycerides are split into glycerol and fatty acids (this process is called lipolysis) with the help of lipases and bile secretions, which can then move into blood vessels. The triglycerides are rebuilt in the blood from their fragments and become constituents of lipoproteins, which deliver the fatty acids to and from fat cells among other functions. Various tissues can release the free fatty acids and take them up as a source of energy. Fat cells can synthesize and store triglycerides. When the body requires fatty acids as an energy source, the hormone glucagon signals the breakdown of the triglycerides by hormone-sensitive lipase to release free fatty acids. As the brain cannot utilize fatty acids as an energy source, the glycerol component of triglycerides can be converted into glucose for brain fuel when it is broken down. (www.cyberlipid.org, www.wikipedia.org)
TAGs can serve as fatty acid stores in all cells, but primarily in adipocytes of adipose tissue. The major building block for the synthesis of triacylglycerides, in non-adipose tissue, is glycerol. Adipocytes lack glycerol kinase and so must use another route to TAG synthesis. Specifically, dihydroxyacetone phosphate (DHAP), which is produced during glycolysis, is the precursor for TAG synthesis in adipose tissue. DHAP can also serve as a TAG precursor in non-adipose tissues, but does so to a much lesser extent than glycerol. The use of DHAP for the TAG backbone depends on whether the synthesis of the TAGs occurs in the mitochondria and ER or the ER and the peroxisomes. The ER/mitochondria pathway requires the action of glycerol-3-phosphate dehydrogenase to convert DHAP to glycerol-3-phosphate. Glycerol-3-phosphate acyltransferase then esterifies a fatty acid to glycerol-3-phosphate thereby generating lysophosphatidic acid. The ER/peroxisome reaction pathway uses the peroxisomal enzyme DHAP acyltransferase to acylate DHAP to acyl-DHAP which is then reduced by acyl-DHAP reductase. The fatty acids that are incorporated into TAGs are activated to acyl-CoAs through the action of acyl-CoA synthetases. Two molecules of acyl-CoA are esterified to glycerol-3-phosphate to yield 1,2-diacylglycerol phosphate (also known as phosphatidic acid). The phosphate is then removed by phosphatidic acid phosphatase (PAP1), to generate 1,2-diacylglycerol. This diacylglycerol serves as the substrate for addition of the third fatty acid to make TAG. Intestinal monoacylglycerols, derived from dietary fats, can also serve as substrates for the synthesis of 1,2-diacylglycerols. [HMDB]. Glycerol tridodecanoate is found in sweet bay. |
---|
CAS Number | 538-24-9 |
---|
Structure | |
---|
Synonyms | Synonym | Source |
---|
1,2,3-Tridodecanoylglycerol | HMDB | 1,2,3-Trilauroylglycerol | HMDB | Dodecanoic acid 1,2,3-propanetriyl ester | HMDB | Glycerin trilaurate | HMDB | Glycerol trilaurate | HMDB | Glyceryl tridodecanoate | HMDB | Glyceryl trilaurate | HMDB | Lauric acid triglyceride | HMDB | Lauric acid triglycerin ester | HMDB | Propane-1,2,3-triyl trilaurate | HMDB | TG 12:0/12:0/12:0 | HMDB | Tridodecanoin | HMDB | Tridodecanoyl glycerol | HMDB | Tridodecanoylglycerol | HMDB | Trilauroylglycerol | HMDB | Dodecanoate 1,2,3-propanetriyl ester | HMDB | Glycerin trilauric acid | HMDB | Glycerol trilauric acid | HMDB | Glyceryl tridodecanoic acid | HMDB | Glyceryl trilauric acid | HMDB | Laate triglyceride | HMDB | Laic acid triglyceride | HMDB | Laate triglycerin ester | HMDB | Laic acid triglycerin ester | HMDB | Propane-1,2,3-triyl trilauric acid | HMDB | Glycerin trilaate | HMDB | Glycerin trilaic acid | HMDB | Glycerol trilaate | HMDB | Glycerol trilaic acid | HMDB | Glyceryl trilaate | HMDB | Glyceryl trilaic acid | HMDB | Propane-1,2,3-triyl trilaate | HMDB | Propane-1,2,3-triyl trilaic acid | HMDB | Tracylglycerol(12:0/12:0/12:0) | HMDB | Tracylglycerol(36:0) | HMDB | 1-Dodecanoyl-2-dodecanoyl-3-dodecanoyl-glycerol | HMDB | Triglyceride | HMDB | TG(36:0) | HMDB | TAG(36:0) | HMDB | TAG(12:0/12:0/12:0) | HMDB | Triacylglycerol | HMDB | Trilaurin | HMDB | TG(12:0/12:0/12:0) | Lipid Annotator, ChEBI | 1,2,3-Propanetriol tridodecanoate | biospider | 1,2,3-Propanetriyl tridodecanoate | db_source | 2,3-Bis(dodecanoyloxy)propyl laurate | biospider | Dodecanoic acid, 1,1',1''-(1,2,3-propanetriyl) ester | biospider | Dodecanoic acid, 1,2,3-propanetriyl ester | biospider | Dodecanoic acid, 1,2,3-propantriyl ester | biospider | Dodecanoic acid, tri-ester with glycerol | biospider | Laurin | db_source | Laurin, tri- | biospider | Tri-laurin | HMDB |
|
---|
Predicted Properties | |
---|
Chemical Formula | C39H74O6 |
---|
IUPAC name | 1,3-bis(dodecanoyloxy)propan-2-yl dodecanoate |
---|
InChI Identifier | InChI=1S/C39H74O6/c1-4-7-10-13-16-19-22-25-28-31-37(40)43-34-36(45-39(42)33-30-27-24-21-18-15-12-9-6-3)35-44-38(41)32-29-26-23-20-17-14-11-8-5-2/h36H,4-35H2,1-3H3 |
---|
InChI Key | VMPHSYLJUKZBJJ-UHFFFAOYSA-N |
---|
Isomeric SMILES | [H]C(COC(=O)CCCCCCCCCCC)(COC(=O)CCCCCCCCCCC)OC(=O)CCCCCCCCCCC |
---|
Average Molecular Weight | 639.0013 |
---|
Monoisotopic Molecular Weight | 638.5485401 |
---|
Classification |
---|
Description | Belongs to the class of organic compounds known as triacylglycerols. These are glycerides consisting of three fatty acid chains covalently bonded to a glycerol molecule through ester linkages. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Glycerolipids |
---|
Sub Class | Triradylcglycerols |
---|
Direct Parent | Triacylglycerols |
---|
Alternative Parents | |
---|
Substituents | - Triacyl-sn-glycerol
- Tricarboxylic acid or derivatives
- Fatty acid ester
- Fatty acyl
- Carboxylic acid ester
- Carboxylic acid derivative
- Organic oxygen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Carbonyl group
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | |
---|
Ontology |
---|
|
Physiological effect | Health effect: |
---|
Disposition | Route of exposure: Biological location: Source: |
---|
Process | Naturally occurring process: |
---|
Role | Industrial application: Biological role: |
---|
Physico-Chemical Properties |
---|
Physico-Chemical Properties - Experimental | Property | Value | Reference |
---|
Physical state | Solid | |
---|
Physical Description | Not Available | |
---|
Mass Composition | C 73.31%; H 11.67%; O 15.02% | DFC |
---|
Melting Point | Mp 46.5° | DFC |
---|
Boiling Point | Not Available | |
---|
Experimental Water Solubility | Not Available | |
---|
Experimental logP | Not Available | |
---|
Experimental pKa | Not Available | |
---|
Isoelectric point | Not Available | |
---|
Charge | Not Available | |
---|
Optical Rotation | Not Available | |
---|
Spectroscopic UV Data | Not Available | |
---|
Density | Not Available | |
---|
Refractive Index | Not Available | |
---|
|
---|
Spectra |
---|
Spectra | |
---|
EI-MS/GC-MS | Type | Description | Splash Key | View |
---|
GC-MS | Glycerol tridodecanoate, non-derivatized, GC-MS Spectrum | splash10-001l-3751900000-186ab5f4aeb9dcd0e97b | Spectrum | GC-MS | Glycerol tridodecanoate, non-derivatized, GC-MS Spectrum | splash10-001l-3751900000-186ab5f4aeb9dcd0e97b | Spectrum |
|
---|
MS/MS | Type | Description | Splash Key | View |
---|
Predicted MS/MS | Predicted LC-MS/MS Spectrum - 10V, Positive | splash10-0a4i-0000009000-f0a58fa5fad480d99baf | 2017-10-04 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 20V, Positive | splash10-0a4i-0000009000-f0a58fa5fad480d99baf | 2017-10-04 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 40V, Positive | splash10-000i-0000907000-ab658a63ebc1bf1cb2e9 | 2017-10-04 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 10V, Positive | splash10-0002-0000009000-5dfb05e6553aa8729621 | 2021-09-22 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 20V, Positive | splash10-0002-0000009000-5dfb05e6553aa8729621 | 2021-09-22 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 40V, Positive | splash10-0a4q-0090909000-7e0e947d313b7e4974cb | 2021-09-22 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 10V, Positive | splash10-0a4i-0000009000-65bd852687bb227267a1 | 2021-09-23 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 20V, Positive | splash10-0a4i-0000009000-65bd852687bb227267a1 | 2021-09-23 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 40V, Positive | splash10-000i-0100907000-9ebd50ecc56178ec88c4 | 2021-09-23 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 10V, Negative | splash10-000i-0330709000-f808d6e66ac99e938d36 | 2021-09-24 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 20V, Negative | splash10-004s-0390301000-f6dbb62ac5df927a6e8d | 2021-09-24 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 40V, Negative | splash10-0092-1950300000-c6be0d26c1f534f7d613 | 2021-09-24 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 10V, Positive | splash10-03di-0000009000-b04629da917188e944f0 | 2021-09-24 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 20V, Positive | splash10-03di-0000009000-b04629da917188e944f0 | 2021-09-24 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 40V, Positive | splash10-03di-0000009000-b04629da917188e944f0 | 2021-09-24 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 10V, Positive | splash10-000i-1110329000-7fa56409688ae35da8c0 | 2021-09-24 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 20V, Positive | splash10-001i-4513391000-709b5c1ed2eb8fcfcf51 | 2021-09-24 | View Spectrum | Predicted MS/MS | Predicted LC-MS/MS Spectrum - 40V, Positive | splash10-0540-1790210000-41ed924482264ba34297 | 2021-09-24 | View Spectrum |
|
---|
NMR | Not Available |
---|
External Links |
---|
ChemSpider ID | 10394 |
---|
ChEMBL ID | Not Available |
---|
KEGG Compound ID | C00422 |
---|
Pubchem Compound ID | 10851 |
---|
Pubchem Substance ID | Not Available |
---|
ChEBI ID | Not Available |
---|
Phenol-Explorer ID | Not Available |
---|
DrugBank ID | Not Available |
---|
HMDB ID | HMDB11188 |
---|
CRC / DFC (Dictionary of Food Compounds) ID | CPD40-V:CPD40-V |
---|
EAFUS ID | Not Available |
---|
Dr. Duke ID | TRILAURIN |
---|
BIGG ID | Not Available |
---|
KNApSAcK ID | Not Available |
---|
HET ID | Not Available |
---|
Food Biomarker Ontology | Not Available |
---|
VMH ID | Not Available |
---|
Flavornet ID | Not Available |
---|
GoodScent ID | Not Available |
---|
SuperScent ID | Not Available |
---|
Wikipedia ID | Not Available |
---|
Phenol-Explorer Metabolite ID | Not Available |
---|
Duplicate IDS | Not Available |
---|
Old DFC IDS | Not Available |
---|
Associated Foods |
---|
Food | Content Range | Average | Reference |
---|
Food | | | Reference |
---|
|
Biological Effects and Interactions |
---|
Health Effects / Bioactivities | Not Available |
---|
Enzymes | Name | Gene Name | UniProt ID |
---|
Carnitine O-palmitoyltransferase 1, muscle isoform | CPT1B | Q92523 | Carnitine O-palmitoyltransferase 1, liver isoform | CPT1A | P50416 | Carnitine O-palmitoyltransferase 2, mitochondrial | CPT2 | P23786 | Liver carboxylesterase 1 | CES1 | P23141 | Pancreatic triacylglycerol lipase | PNLIP | P16233 | Hepatic triacylglycerol lipase | LIPC | P11150 | Lysosomal acid lipase/cholesteryl ester hydrolase | LIPA | P38571 | Inactive pancreatic lipase-related protein 1 | PNLIPRP1 | P54315 | Patatin-like phospholipase domain-containing protein 3 | PNPLA3 | Q9NST1 | Gastric triacylglycerol lipase | LIPF | P07098 | Endothelial lipase | LIPG | Q9Y5X9 | Diacylglycerol O-acyltransferase 1 | DGAT1 | O75907 | Pancreatic lipase-related protein 2 | PNLIPRP2 | P54317 | Lipoprotein lipase | LPL | P06858 | Monoglyceride lipase | MGLL | Q99685 | Protein disulfide-isomerase | P4HB | P07237 | 2-acylglycerol O-acyltransferase 2 | MOGAT2 | Q3SYC2 | Patatin-like phospholipase domain-containing protein 4 | PNPLA4 | P41247 | Diacylglycerol O-acyltransferase 2 | DGAT2 | Q96PD7 | 2-acylglycerol O-acyltransferase 1 | MOGAT1 | Q96PD6 | 2-acylglycerol O-acyltransferase 3 | MOGAT3 | Q86VF5 | Glycerol-3-phosphate acyltransferase 3 | AGPAT9 | Q53EU6 | Patatin-like phospholipase domain-containing protein 2 | PNPLA2 | Q96AD5 | Pancreatic lipase-related protein 3 | PNLIPRP3 | Q17RR3 |
|
---|
Pathways | Not Available |
---|
Metabolism | Not Available |
---|
Biosynthesis | Not Available |
---|
Organoleptic Properties |
---|
Flavours | Not Available |
---|
Files |
---|
MSDS | Not Available |
---|
References |
---|
Synthesis Reference | Not Available |
---|
General Reference | Not Available |
---|
Content Reference | — Duke, James. 'Dr. Duke's Phytochemical and Ethnobotanical Databases. United States Department of Agriculture.' Agricultural Research Service, Accessed April 27 (2004).
|
---|